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THE INTEGRABILITY OF THE SQUARE EXPONENTIAL
TRANSPORTATION COST!

By M. TALAGRAND AND J. E. YUKICH
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Let X,,...,X,,Y;,...,Y, be iid. with the uniform distribution on
(0,112, 1), where || || denotes the Euclidean norm. Using a new presenta-
tion of the Ajtai-Komlés—Tusnady (AKT) transportation algorithm, it is
shown that the square exponential transportation cost

2
2 X, = Y, )l
inf ) exp(——%ﬁ) ,
T i1 K(log n/n)

where 7 ranges over all permutations of the integers 1,..., n, satisfies an
integrability condition. This condition strengthens the optimal matching
results of AKT and supports a recent conjecture of Talagrand. Rates of
growth for the L, transportation cost are also found.

1. Introduction and Statement of Results. Given two collections of
points {x;}* ; and {y,}; in the unit square ([0,1]2, | |)), where || || denotes the
Euclidean norm, the Euclidean two-sample matching problem (or transporta-
tion cost problem) involves finding a perfect bipartite matching between the x
and y points so as to minimize the sum of the edge lengths. The L,
1 < p < o, transportation cost between the x and y points equals

n
infn=" ) llx; —Yall”,
ks i=1

where the inf ranges over all the permutations 7 of the integers 1,2,...,n.

Letting { X} ; and {Y;}”_, denote two sequences of i.i.d. random variables
which have the uniform distribution A on [0, 1]2, define the random trans-
portation cost by

n
Tp(n) = inf n_l Z ”Xt - Yw(i)llp'
i=1

aw

The following theorem concerning the exact rate of growth of ET)(n) was
proved by Ajtai, Komlés and Tusnady (AKT) (1984), who were the first to
discover the depth of the transportation cost problem. They proved this result
using the so-called transportation algorithm (described in Section 2), which
involves a clever shifting of the sample points. Throughout, the notation
f(x) = O(g(x)) means that f(x) = O(g(x)) and g(x) = O(f(x)).
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TRANSPORTATION COSTS 1101
THEOREM A [AKT (1984)]. ET(n) = 0((log n/n)"/?).

Subsequently, Shor (1985) combined the marriage lemma with the AKT
transportation algorithm to provide an alternative proof of the upper bound
of Theorem A; see Coffman and Lueker (1990) for an exposition of this
approach. Talagrand (1993), following a different approach based on majoriz-
ing measures, also gave a proof of the upper bound of Theorem A. The
approach of Talagrand (1993) solves several related matching problems and,
among other things, yields the following exponential moment result, signifi-
cantly strengthening the upper bound of Theorem A. For 1 < i < n, let the
components of X; (respectively Y;) be denoted by X, ; and X, ; (respectively
Y,,and Y, ).

THEOREM B [Talagrand (1993)]. For B <1 /4, there is a constant K :=
K(B) depending on B only, with the following property: with probability
greater than 1 — n™2, there is a matching m such that

max|X, ; - Y, .l < K(log n/n)"?

i<n

and

1n X, , - Y, o \°
Sl R P L LI g
n,;> K(log n/n)

The main contribution of the present paper provides a new approach to the
AKT transportation method. Rather than studying the displacement of a
sample point X;, 1 <i < n, we instead consider the displacement of a fixed
point u € [0,1]2. When conditioned appropriately, the successive displace-
ments of the fixed point # become symmetric random variables, have zero
correlation and also exhibit subgaussian character. This approach consider-
ably clarifies the transportation method and removes a number of technical
obstacles. As an illustration of its power, we will prove the following main
result, which does not seem obtainable by the classical approach. As with
Theorem B, this result provides a substantial strengthening of Theorem A,
although in a different direction.

Assuming throughout that the random variables X and Y are defined on
the probability space ({,.%, P), the main result shows that the “square
exponential transportation cost” is integrable on large sets:

THEOREM 1. There is a constant K such that for all n > 1 there is a subset
A, of Q with P(A%) <n? and

12 ”Xi_Yﬂi” 2
inf — Z exp(—() 1An <K.

E
™o K(log n/n)"*
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REMARKS. (i) Notice that by the convexity of exp(x?), Theorem 1 implies

1 (X =Yl |
E{expinf— ) ————%/2 1, <K
= n ;-1\ K(logn/n) "

or, stated in terms of T,(n),

n
E(exmeQ(n))lAn <K.

Thus, (n/log n)Ty(n) has an exponential tail on large sets.
(ii) Using exp(x) > x* /p!, we deduce rates in terms of n and p for the L,
transportation cost: There is a constant K such that for all p > 1,

ET,(n) < (Kp)"*(log n/n)*’?.

(iii) It is an interesting open question whether (n /log n)'/?ET (n) converges
as n — oo,

Theorem 1 takes on added significance in connection with the deep match-
ing result of Leighton and Shor (1986), who prove that the minimax matching
length

inf max [|X; — Y,
7 1<i<n
between the X and Y points is of order n~!/%log3* n. Although they
actually obtain a.s. rates, we will only give a weak form of their result:

TuEOREM C [Leighton and Shor (1986)].
Einf max |X; - Y, /= @(n—1/2 log/* n).

7w 1<i<n

In Talagrand (1993) it is conjectured that the exponent 2 of Theorem 1
may actually be increased to 4. Were this conjecture true, it would contain
the upper bounds of both the AKT and Leighton—Shor results. In this context
notice that Theorem 1 and convexity imply the minimax estimate

Einf max |X; - Y,/ = O(n~'/%log n).

T 1l<i<n

In the sense of exponential integrability, Theorem 1 thus interpolates between
AKT and a weak form of Leighton—Shor.

2. Proof of Theorem 1. The proof of Theorem 1 involves a special
subdivision of the unit square [0, 1]2.

Begin by subdividing [0, 1] in a manner used first by Ajtai, Komlés and
Tusnady (AKT) (1984) and subsequently by Shor (1985) and Shor and Yukich
(1991). First divide [0,1]? in half vertically (with a vertical bisector) and
linearly transform each half so that it has area equal to the fraction of sample
points {X,}*., in it. When each half is transformed, the sample points in that
half are similarly transformed. Then subdivide each of these halves horizon-
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tally and transform each to have area equal to the ratio of the number of
transformed points contained within to the total number of points, n. This
process generates four rectangles which partition [0, 1]2. Apply the procedure
recursively, alternating vertical and horizontal divisions. Repeating this
refining procedure until each region contains at most one point yields n
nondegenerate rectangles. For any random sample {X;}" ;, each of the n
transforrlned sample points is contained in a nondegenerate rectangle with
area n” .

Take r with 27" = K(log n/n)'/2, where here and henceforth K denotes a
universal constant whose value may change from line to line. Repeatedly
apply the preceding transformation until step 2r. The resulting transforma-
tion, which we will call T :=T(X,...,X,), generates 22" subrectangles.
Let {X,} ; denote the collection of transformed sample points at step 2r.
Similarly, given the sample Yi,...,Y,, define a second transformation
T(Y;,...,Y,) and let {Y;}" ; denote the transformed Y points at step 2r.

For any random variable W and subset A of Q, set E,W := E(W1,). To
prove Theorem 1, it suffices by the convexity of exp(x?) to show there exists a
K such that for all n there are sets A, and B,, with P(A%) < 3n~ 2 and
P(B!) < 3n~2, such that

. 2
12 “Xz _XL'”

Ey{— ) exp| ——————7 <K,

A"{n El p(K(log n/n)l/z) }

2
} K
and

~ ~ 2
1n IX, - Y,
(2.1b)  E, o3 {inf -y exp(——”— <K
" T on

(2.1a) 3
1Y; — Yl

K(log n/n)"?

i1 K(logn/n)l/2

First step: Proof of (2.1a). Clearly, it suffices to prove the first inequality
in (2.1a). Consider the sample point X; € [0, 1]? and its displacement accord-
ing to the transformation T = T'(X,,..., X,). Let D, = D(X,), 1 <j < 2r,
denote its displacement on the jth step of the recursion. When j has odd
parity, D; represents a horizontal displacement; when j has even parity, D;
represents a vertical displacement.

The approach of Theorem 1 would be rather obvious if it were true that the
displacements of similar parity were independent. However, this is not the
case. The following proposition, which is proved in the Appendix, actually
shows that the displacements of similar parity are negatively correlated. (As
a simple consequence of the negative correlation, we note in passing that the
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variance of the total horizontal displacement is bounded by

2 2r

<) [EDJ-2 < Kr/n,
j=1

E| ¥ D,
J<2r
Jjodd

since [EDj2 < 1/n, by an easy computation. This estimate, together with the
approach of Shor (1985), provides a rigorous proof of the upper bound of
Theorem A using only the AKT transportation algorithm. In the original
proof [AKT (1984)], the authors do not fully justify the fact that the correla-
tions between the shifts D; have a negligible effect.)

PROPOSITION 1. For all 1 <1, j < 2r of similar parity, ED,D; < 0.

As might be expected, the negative correlation unfortunately leads to
involved technical analysis when proving exponential integrability results
and we will not pursue this line of investigation. Instead, we consider the
displacement of a fixed point u = (x, y) € [0, 1]2. As it turns out, this formu-
lation bypasses the need to work with negatively correlated displacements
and simplifies the analysis.

Given u € [0;1]?, let D; = D{u), 1 <j <2r, denote its displacement on
the jth step of the transformation 7. We note that D, is symmetric when
conditioned with respect to D,. Thus E(D,D,) = 0. Similarly, for any odd m,
the random variable D, , when conditioned on the previous displacements
D,,...,D, _,, is symmetric, and so E(D,... D,) = 0. The displacements of
the fixed point u thus have zero correlation.

The proof of (2.1a) will be accomplished with the aid of a few preliminary
lemmas that describe the behavior of T' on certain subsquares of [0, 1]%. First,
define for a fixed [ < r the set .#, consisting of the 22! dyadic squares:

[k271, (R +1)27] x [R'27, (k' + 1)27Y], 1<k, k' <2

Next, define the event A, C ) to be the set of w € () such that:
(i) for each dyadic square S €.%}, 1 < < r, the proportion p; ¢ = p; s(w) of
sample points X;,..., X, in the left half H of S satisfies

(2.2) |P1,s - %| < K(l/n)1/22(r+z)/2;

and
(ii) the proportion pf¢ of sample points in the upper half of H and H*
satisfies (2.2).

LEMMA 1. P(A%) < in™2

Proor. Let Bi(m, p) denote a binomial random variable with parameters

m and p. Notice that p, ¢ £ Bi(M, 1)/M, where M £ Bi(n,2 2!). Now apply
standard binomial tail estimates as in Lemma 2.1 of Shor and Yukich (1991).
O
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The next lemma shows that the transformation T changes the aspect ratio
of any dyadic square by a small amount. By aspect ratio, we mean the ratio of
the longest side to the shortest.

LEMMA 2. On the set A, the aspect ratios of the transformed dyadic
squares are uniformly bounded by a constant.

Proor. Consider a fixed dyadic square. T' transforms it into a rectangle.
After subdividing the rectangle vertically in half, the side is multiplied by a
factor of 2p [or (2p)~']. However, on the set A, condition (2.2) implies that
on the /th subdivision,

2p — 1 < 2K(l/n)1/22<r+1>/2_

Thus, the aspect ratio is at worse multiplied by a factor of

(1 - 2K (1/n)"?20+0/2) "

On the following horizontal subdivision of the subrectangle, condition (2.2)
again shows that the aspect ratio is at worst multiplied by the same factor.
After 2r such subdivisions the aspect ratio is at most
r -1 2
TT(1-2K(1/n)"/?20+D/2)

=1

It is easily verified that the above product is O(1) since

Y (I/n)?20+0/2 = 0(1). O
=1

The next lemma follows easily from Lemma 2 and the definition of aspect
ratio.

LEMMA 3. There is a constant K such that on the set A, the edge length of

any transformed dyadic square S €%, 1<l <r, is bounded below by
K=1271/2 and above by K27/,

Therefore, when w € A,, the transformation T' generates subrectangles of
roughly similar proportions, allowing a precise estimation of the displace-
ment of u, as shown by the next two lemmas. The first lemma shows that
on A,, the random variable D,(uz), when conditioned on D,...,D;_,, is a
subgaussian random variable with parameter 1/n; see Ledoux and Talagrand
(1991) for a discussion of subgaussian random variables.

LEMMA 4. There is a constant K such that for all j of odd parity, 1 <j < 2r,
for all B> 0 and u € [0, 1]2,

(E(exp BD;(u)ID;,..., D;_3))1, <expKB%/n.
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PROOF. At the jth stage, the point u belongs to one of the 2/~ ! trans-
formed dyadic squares S belonging to 4;_;),,. Assume without loss of
generality that u belongs to the left half H of S. The square S contains M;
sample points, where M, £ Bi(n,2"U~Y), and H contains Bi(M;, 3) points.
Notice that the displacement D,(x), when conditioned upon Dy, D, ..., D;_,,
equals C(p; — %)Lj, where p; is the proportion of points in H, L; is the
length of the horizontal side of S and C := C(u) < 1 is a constant prescribing
the position of u relative to the bisector of S. It follows that D/(u), when
conditioned on D, Dy,...,D;_,, is equal in distribution to the random
variable

CL;/M; X (Bi(M;,}) — M;/2).

Using the elementary inequality Eexp Ae < exp A%2/2, where ¢ is a
Bernoulli random variable satisfying Pr{s = 1} = Pr{e = —1} = 1, together
with independence, it follows that for all 8 > 0,

E(exp BD;(u)|Dy,...,D;_,) < exp CB?L%/8M,.
Now notice that if L; denotes the length of the vertical side of S;_;, 5, then
By Lemma 3, K™'L, < L, <KL, on A, so that
L? <KM;/n
on A,. Therefore, by combining the above inequalities, the desired estimate

[E(exp BD;(u)|Dy,..., D, )1An <expKB?%/n

Jj—2
follows. O

The next lemma shows that the net horizontal displacement is subgauss-
ian with parameter r/n.

LEMMA 5.

Ea exp( B Y Di) <exp KrB?/n.

i<2r
iodd

Proor. Using conditional expectations, it follows that

Es exp(ﬁ Y Di) < [EA"[E[exp(B Y Di)|D1""’D2r~2}

i<2r i<2r

=IEAn[exp(B Y Di)IE(expBDzr|D1,...,DZ,_Q)]

i<2r-2
Sexp(K,Bz/n)[EAnexp(B Y Dl-)
i<2r—-2

by Lemma 4. Now continue recursively. O
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Using Chebyshev’s inequality and choosing B appropriately, it follows that
for all ¢ > O,
Pr{

A similar inequality holds for the net vertical displacement ¥; _,, D;, where i
runs over indices of even parity. Next, let D(u) denote the total displacement
of the point u by the transformation 7' up to and including stage r. Since
D(u) is bounded by the sum of the net horizontal and vertical displacements
of u, it follows that

Pr{|D(u)| > ¢, A,} < 8exp{—t®n/Kr}.

Using EX = [ P(X > t)dt for positive random variables X, it follows by
standard arguments that there is a K such that for all z € [0, 1]2,

(2.3) Es exp(nD*(u)/rK) <2

Y. D,|>t¢, An} < 2exp(—t’n/Kr).

i<2r

and, therefore, by Fubini’s theorem,
24 2
(2.4) [EA"/[[0,1]2eXp(nD (u)/rK) du < 2.

Next, let .7 = {S;, ..., Sy} be the collection of the 22" dyadic squares of
side 277 and let N, 1 <i < 2?7, denote the number of sample points in
square S;. Notice that T depends only on the value of the vector

A = <N1, N22r>

Therefore, the total dlsplacement of u may be written using the more
suggestive notation D(u) = D(u, N).

Consider now a fixed sample point X,;. We wish to show that (2.3) holds
with u replaced by Xj;. Since

Pr{X, € S;KNy,...,Nye)} = Ny/n,  i=1,...,2%,
it follows that the conditional density of X, given N has the form

22r N
Y =271
i=1 1 '

Now N, /n is just the area of the transformed square T'(S,), which by Lemma
3 is at most K27 2" on the set A,. Thus, on the set A,, the conditional
density of X, given N is bounded by some constant K uniformly over [0, 112
Recognizing that A, describes a set .2, of admissible values of N, it follows
that

Ea, exp nD*(X,) /7K = E, (E{exp nD*(X,, N ) /rK }| N )

=Y [E(exp nD2(X1,Z\7 = l;)/rK |N = l%)Pr(]\Af = I%)
ke,

n
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From the above we know that the conditional density of X, given N==Fis
bounded by a constant K uniformly over [0, 1]> whenever k €, It follows
that

E, expnD?*(X,)/rK<K ), {ff _exp nD2(u,l%)/rKdu}Pr(l\A/' = k)
keM

<KE, ff exan2 (u)/rKdu

< 2K

by (2.4). Since the above analysis holds for all sample points, we obtain
1 n
E, — ). expnD?*(X;)/rK < 2K,
i1

which is precisely (2.1a). This completes the first step. O

Second step: Proof of (2.1b). It will suffice to show there is a K such that
forall weA,,

inf max IIX Y (L)H/K(log n/n) 172 2.

T l<i<n
Let X’ 1 < i < n (respectively Y 1 < i < n) be the transformed points after
the completlon of the recursion scheme based on the sample Xl,...,Xn
(respectively Yi,...,Y,). Notice that X l<i<n (respectlvely Y 1<i<n)
is contained in a rectangle R, (respectlvely Q,) of area n~ Moreover the
rectangles {R,}" ; and {@;}[ ; form partitions of [0, 1]2. On the subset A, cQ,
the diameter of the rectangles R,,..., R, is at most the diameter at the
r = log(Kn /log n) stage; that is, is at most O(log n/n)'/2. Thus, on A, it
follows that

I1X, - Xl < K(log n/n)"?.

Similarly, there is a second subset B, c Q, with P(Bf) < 4n~2, such that on
B

IY; — Y, < K(log n/n)"*.
It thus suffices to show for all w € A, N B,

(2.5) inf max ||X; - Y, l/K(log n/n)"* < 1.
w l<i<n
It only remains to show for all w € A, N B, that there is a perfect
matching 7 between the collections {R,}] , and {Q }*_,. This is accomplished
with the following lemma, which is a simple corollary of the marriage
theorem and which first appeared in Shor (1985) and then Shor and Yukich
(1991).
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LEMMA 6. Suppose that there are two partitions of [0, 1]? into n rectangles
of equal areas. Label the rectangles R,,..., R, and Q1,..., Q,. Then thereis a
matching mw between the R;s and the Qs such that for all 1 <i <n,
R, NQ,, * D

Since || X, — Yw(i)ll is at most the sum of the diameters of the rectangle R,
and the associated rectangle @), the estimate (2.5) follows, completing the
proof of Theorem 1. O

APPENDIX

We provide a proof of the fact that displacements of sample points are
negatively correlated; see Proposition 1.

ProOF oF PROPOSITION 1. We will show that ED, D, < 0. The approach for
this special case can be modified to treat the general case. For simplicity of
exposition, we will assume that n has even parity. The following arguments
may be modified to treat the case of odd parity.

Throughout, take S, :=[0,1]> and let S, be the dyadic square of side
length 3 which contains X,. Let H, and H, denote the left halves of S; and
S;, respectively. Clearly, by symmetry it is enough to show that

ED,Dylx, e < O

Let A denote the distance between X; and the bisector of S; (prior to the
transformation 7'): thus, A is uniformly distributed over [0, 1]. Also, let M

denote the number of sample points in H; in addition to X,. Finally, for
i=1,31et

DiL = Dil[Xle H3]1[Xle H,] and DiR = Dil[Xle H§OS3]1[XIE Hy)
denote the displacement of X, according to its position in Sj.

Notice that when A and M are specified, then DI and D¥ are completely
determined and in fact

Dfl[A=a,M=m] = CDfl[A=a,M=m],
where ¢ == ¢(8) > 1 depends only on &. (This is true because if X, is in the

right half of S, then it is closer to the bisector of S; and undergoes a larger
displacement.) Symmetry considerations imply that

R L
D3 lis_s,m-m1 < D5Liacs, s-m
and, therefore,

RpR LpL
DyD3 s 5 pyem 4 — cDyDj Lia-s, m=m-
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Thus, using conditional expectations and the independence of A and M we
compute

“51)11)31[)(1 € H,]

- ff[E(DlD31[X16H1]I(A, M)) dP,, dP,

é[/[E(DfD:,’; + DEDE|(A, M)) dPy, dP,

éff[E(DlLDgf — cDIDE|(A, M)) dPy, dP,

- %fol/‘l nil (1 - c)E(DIDEN(A = 8, M = m))Pr{M = m} dPy(5).

m=0

Since ¢ > 1, it remains to show that the integrand is positive for each choice
of 8. The integrand has the form

n/jV_:l[E(DlLDPfI(A =6,M =m))Pr{M = m)
m=0
+E(D{Df(A=8,M=n—-m —1))Pr{M=n—-m - 1}
(A1) _ n/%_z([E(DILD?fI(A =8, M = m))Pr{M = m)
m=0

+E(DID[(A=8,M=n—-m - 2))Pr{M=n—-m - 2})
+E(DIDi|(A=8,M=n - 1))Pr{M=n -1},
since when M = n/2 — 1, there are equal numbers of points in H, and Hf,
and so D; = 0. Observe that the last term in (A.1) is positive. Notice that for
m <n/2— 2, DI conditioned on {A = 8, M = m} equals C(8, m), where
C(8,m) <0 is a constant. Moreover, D conditioned on {A =8, M =n —
m — 2} equals —C(8, m). Therefore, the preceding sum becomes
n/2-2

@ X coum|EDia = o= m)(" 1)

—E(DH(A=8,M=n—m - 2))(;’; N 11)]
The factor within brackets is a scalar multiple of the difference
(m+1)E(Di(A=8,M=m)) —(n—m—-1)E(Df[(A=8,M=n—-m~2)),
which is negative, because
(A.2) (m+ DE(Dfl(A=8,M=m)), O0<m<n-2,
is increasing with m. To see this, fix m and define the random variables

U = number of sample points in S, in addition to X,
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and

V = number of sample points in H, in addition to X,.
Then U £ Bi(m, ) and V £ Bi(U, 1), where Bi(n, p) denotes a binomial
random variable with parameters n and p. Since the width of the dyadic

square S, after the transformation 7' is equal to (m + 1)/n, the displace-
ment D% given (A = 8§, M = m) equals

V+1 ‘U—V)m+1

o —
c(?) U+1 U+1 ’
where C(8) is a constant depending only on §. Conditioning on U and noting

EE2V — U|U) = 0, it follows that

n

E(DE(A = 8, M = m)) = @E(Z: i)

Elementary calculations give

[Em+1 ol1 1\"™*!
(Tet) =2 () |

and thus (A.2) is clearly increasing with m. Thus, ED,D4 < 0, as desired. O
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